AFRL-IF-RS-TR-2000-50
Final Technical Report
April 2000

PROTOTYPE APPLICATION OF A SKETCH-
BASED QUERY USER INTERFACE FOR GIS

University of Maine

Max J. Egenhofer and Andreas D. Blaser

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

\!
anste 5

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

DTIC QUALITY INSPEOTRD'§)

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2000-50 has been reviewed and is approved for publication.

APPROVED: M%

JONATHAN C. GREGORY
Project Engineer

FOR THE DIRECTOR:

JOHN V. MCNAMARA, Technical Advisor

Information & Intelligence Exploitation Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFEC, 32 Brooks Road, Rome, NY 13441-4114.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations 01_' notices on a specific
document require that it be returned.

Form Approved

REPORT DOCUMENTATION PAGE o A o8

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of i ion. Send regarding this burden estimate or any other espect of this collaction of information, including suggestions for reducing this burden, to Washington Headyuarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arington, VA 22202.4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, OC 20503,

3. REPORT TYPE AND DATES COVERED
Final Jul 95 - Feb 99
5. FUNDING NUMBERS
C - F30602-95-1-0042

2. REPORT DATE
APRIL 2000

1. AGENCY USE ONLY (Leave blank)

4. TITLE AND SUBTITLE
PROTOTYPE APPLICATION OF A SKETCH-BASED QUERY USER

INTERFACE FOR GIS PE - 62702F
PR - 4600

6. AUTHOR(S) TA - AA

Max J. Egenhofer and Andreas D. Blaser WU - 05

e o ———r————————————————————————————

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES} 8. PERFORMING ORGANIZATION

University of Maine REPORT NUMBER
Department of Spatial Information Science and Engineering

National Center for Geographic Information and Analysis REP99-1
Boardman Hall 321

Qrono ME 04469 _
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSI(ES)

Air Force Research Laboratory/IFEC
32 Brooks Road
Rome NY 13441-4114

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2000-50

11. SUPPLEMENTARY NOTES
Air Force Research Laboratory Project Engineer: Jonathan C. Gregory/IFEC/(315) 330-4294

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. ABSTRACT (Maximum 200 words]
The objectives of this effort were to explore and study other interface/interaction models between a user and a GIS database

besides textual SQL based methods. Sketching (a simplified stylized drawings/diagram) is a "natural” way to express and
define relationships that are frequently used when accessing GIS databases, (e.g., find a road intersection on the north side (Tf
a lake near a town, or list the houses near to this portion of the river.) The effort analyzed the relationships that are defined
in (and between) objects in sketches, and methods to derive queries from those defined relationships in and among them.
This prototype was used as a tool in the research performed on sketch relationship query extractions done for this effort.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Sketch, Graphical User Interface (GUI), Geographic Information System (GIS), Graphical 36
Relationship, Geographical Object Relationships, Geographic Queries, GIS Databases 16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

Standard Form 298 (Rev. 2-89) (EG}

Prescribed by ANS) Std. 239.18
Designed using Perform Pro, WHSIDIOR, Oct 94

Table of Contents

1. INTRODUCTION....cciccreeerrnnessanersasanaen essessssesesresnannsasaassnnnreran esesesesnasannnausasrRasesmsnse 1
1. 1. MOTIVATION AND GOAL ...covvniviniinniiteeierireersmmeressstessessnseetsistssassesmesesssastensstnuesstassssstsnms 1

1.2. THEORETICAL FOUNDATION AND METHODOLOGYccutiiiiiiiiiriinieeensiniimniniinniasisseneinne 1

2. USER INTERFACEcccccse0nse ersesasanes S seessnsesasanssnsnssasasasan cesasssesnesannsasasussannsasne -3
3. DATA MODEL ...ccccennmssenmsnnissasnes wermrseseressansranssnessans reessmssessseesssanseassnsrassneressmasras 4
B SKET CH . emuiiuiieieitniieraretnrerremaseasenssrssiersarsmssetssssrsomsssssetssanssnnsstassesstanssomanssiestasensstsensssses 4

B2, OBUECTS .uitiuiriiriuirinrereeasteietiorssessessiesesssssassssnsssssamsssansrtessstensessessarmasnrsaatssssstossesssssaons 5
3.2.1. STROKE AND POINT ..coiitieireietirinitnriersisnreessssssssisssessnsessassemssessasisssesatenssmsasessstasiassossssoses 5

B.2.2. AN OBUECT ..o oiicreenrerirrereeeresstunesimessesssbanssssssnssssssesssnsmessorsmierssesssesssstonsnrtanmessssssassisssisnnstoens 5

3.2.3. SKETCH ELEMENTScttieriireeeniscntcnieiminenaeesssansnsssnsses feeeeesreessibeeeesraneeaesesissiresir nneanras 6

3.3. RELATIONS ..cotttiririeiieeiiieeitiieteseireesestssecesesssssssssnssesssmnsisssssnses eererserernnesessessasserennranra 7

4. SKETCH PROCESSINGccccetstunensnerennnsssmsemennsansssssasanne earsnssus cessmascacsnsnanesusasnsnsnns 8
4.1, SKETCH PARSING......ccoettmuerreranerernesermiresssesserssessensssssanaesssssees reerseerraerreentrisssssersnannsane 8
4.1.1. SMOOTHENINGccorctveeirerrerereeserssssmnresssessrssesssmsssssssesssmansssasssstssssssstasassasionmssssssssntasneiosss 8

4.1.2. SEQUENCINGccterriririnrenneisrensiesnimessssessesssesssesssessssorssmennsasesss et e 9

4.2. OBJECT GENERATION. ... cuuiteiiierienrtnrerrasetamerecsstrssrtssesaressrnterasimestasesnaraesastmssstsstsstensin, 10
4.2.1. TEXTDETECTION....ocivievteeeesrereesssessmaesressressssesessssssasessesmtssoasenesssssasesssssasassntiosasosssosensnns 10

4.2.2. GESTURE EXTRACTION ...cccvvvrneeinnusersssnsssrsemsssrsssnnsennssiesssssssssiossmansnss evereeeraeressisesereemenrins 10

4.2.3. SEGMENTATIONcueviiereeerrrrrernrnreraemsiersseersssssessensseassnstasmesssstoessssssntansnrsasnestatssssssasessssssasss 11

4.2.4. OBJECT COMPLETION / OBJECT CLEAN-UPoovviiiriininiicnne eeemeesrereesesarnersestasosreessmannenerens 12

4.2.5. OUTLINE EXTRACTIONuvvteeiecrrnreeeerinraessmessssosssssssasesssnsssnsssstssssssssnaanssisssssstssisessssnmmesssses 12

4.2.6. TYPE DETERMINATION......covtreeraieersireesiesemmsnnersnmesssesssssssssessssssissionsesssassentsssssanssassmssensnae 13

4.2.7. PARALLEL EXTRACTIONcoveeenenne eetervenessemn saseesesssssbeasiseste psEat e st e eseeattsAesrBe St e ra R nsesenaass 13

4.2.8. KERNEL EXTRACTION.......cccovereririnnn ©eevressereessasessssassasasetrseetesaas et ste et eetesntataetnaeesas it b bbbes 14

4.3, RELATION EXTRACTIONeoereeeeeeeeeveseessesemsssssssssessessasssssssessesssemsessssanssensanssssassssssanss 14
4.3.1. RELATIONAL NETWORK GENERATION......cuiurueseersusmisisisssmsssisasiss st sttt st s s 14
432TOPOLOGY .. 15

4.3.3. DIRECTION...ueetititeenieeteeeiiiissssusnnssneeresasbasssesnesssssetmstoissanasseeserses iessssssnsmnssntnannessesassecseses 16

4.3.4. METRIC ...covrveeerecerivnrercnensemanessnessenns eeseessesesasesssaneectesnseretesentassseasabessbeestEtIaREssRNs aenRa T ats 16

5. LEVELS OF ABSTRACTION erssesasnsnanansainne swsaserssuasannns sesnussennsunnsms PO | -
5.1, SKETCH VIEW .vvvvvoeeoeeeosssssesssses s sesessssssseese st sesesmsessisssenssessesssssssssssasssesssmenssssssoess 18

B.2. OBUECT VIEW eriiiiiieretnerienireereieeaserssstenssnssnsssistorsssssssmssiesnsasssniossasssassamamssamssensstosssns 19

5.3, FORMAL VIEW......citttiiieriiienirenieremesesnsersasesessssssstesssrsssimensssaassssasssssstnsssssonsesmenesssssssass 20

6. FUTURE EXTENSIONS S eesnrnsssamanssasasnsennunns eessersranname cerennsans seranseaaras 21
7. CONCLUSION ...cccrrmansinnnsnnnsernssnanssmnsansnssssns cesnsensannnanses casnrasee crassssssenssnseansnsusssns 24
8. REFERENCES «..ceivracseneassnsens SR CeetseesesssssesessessmestestastaSearataRERRIEER RS RRLS 25

i

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

List of Figures

General Data Structure

General Overview of the CsketchDoc Class
General Overview of the CSObject Class

General Overview of the CSElement Class
General Overview of the CSBinRelation Class
Principle of the Douglas Simplification Algorithm
Basic Principle of the Influence of Time for the Sequencing9

(o I e =

Example for Dashed Line and Hatch Detection 11
Segmentation of and Object ' 11
This Figure Shows a Fragmentary Sketched Object 12
Three Cases Where Object Completion is Necessary 12
The Two Areas Resulting from Different Turning 13
Left a Line Object Before the Parallel Extraction 13
An Object of Type Region and its TMBR with the Two 14
Binary RR Object Relation 15
Direction-Relation Matrix for an object A 16.
Metrical Refinements of Topological Relations 17
Sketch View with a Typical Sketch 18
Object View Showing the Same Situation 19
Formal View Showing the Same Situation 20

ii

Prototype Application Sketcho!

1. Introduction

This report provides an overview of design and implementation related issues of a sketch-
based query user interface for Geo Information Systems (GIS) and its prototype
implementation called Sketcho!. The prototype application was developed in the scope of the
Spatial-Query-by-Sketch project (SQbS), by the NCGIA in Orono and funded in part by the
Airforce Laboratories in Rome. Beside the description of the used data structures and data
models, we review the sketching process, as well as the different levels of abstraction.

. This technical report seeks to explain the applied principles and methods of the prototype, for
user specific questions we refer to the Sketcho! users guide (Blaser, 1999) and the
documentation on the Sketcho! CD-ROM.

1.1. Motivation and Goal

Sketching and talking are very common and expressive forms of interaction among people in
their day to day life, but when it comes to human-computer interaction, then people have to
rely on much more primitive modalities, such as pointing and typing. On the other hand, if
computers could understand either spoken word or sketched descriptions, an interaction with
computers would be much more intuitive and more powerful. We believe that such new muiti-
modal forms of user-computer interaction are particular helpful within heterogeneous domains,
such as GIS or other information systems, because sketching and talking are in many ways
more expressive and such more suitable to describe complex data structures.

Sketching in parﬁcular seems to be well suited to express spatial relationships and constraints
among objects, most of all, because it is a visual and two-dimensional language. Therefore, we
believe that a sketch-based user interface has a great potential to query a spatial database.

1.2. Theoretical Foundation and Methodology

The theoretical foundation of the prototype is based on three research areas, that have been
investigated previous to the implementation. '

+ User interface design,
+ Sketch behavior of people (human subject testing, concerned with sketching habits), and
+ Spatial relation theory ” '

The initial step was to build an animated mockup of a sketch-based query user interface using
Macromedia Director (Blaser, 1996),(Blaser, 1997). This simulation was a good starting point
for developing interaction strategies and testing the applicability of new interaction methods.
The conceptual design of a sketch-based application for GIS has been examined in
(Egenhofer, 1996; Egenhofer, 1996; Egenhofer, 1997). In order to acquire knowledge about
the different real world strategies people use when they are sketching, we conducted an
extensive survey involving 34 subjects with different educational and cultural background and
analyzed over 90 sketches on an object by object base (~1200 sketched objects). The resuits
have been published in a technical report (Blaser, 1998). The theoretical foundation for the

1

data model of the implementation finally, is rooted in different theories concerned about binary
spatial relations and investigations made specifically for this project. These include theories
about topology (Egenhofer and Franzosa, 1991; Egenhofer and Mark, 1995), metric (Shariff,
1996) and directions (Goyal and Egenhofer, (in press)).

The implementation, itself was conducted in standard fashion, applying a top down approach,
that is the conceptual design of all data objects and classes was done from general to more
specific types (classes). Once the overall design of the data model was decided, the
functionality of the prototype was added in a sequential manner, from recording and assessing
single strokes to the visualization of the formal representation of the sketch.

2. User Interface

The user interface of évery device is a central part of any interaction between user and
machine, but unfortunately it is exactly this link in the chain that often gets insufficient
attention. Hence, many user interfaces in the past were clumsy, unintuitive, difficult to use, or
simply inappropriate for what they were designed to. But as processors’ clocks aim for
gigahertz cycles, the excuse that there is not enough processing power to support
sophisticated user interfaces makes less and less sense. Hence, many application developers
have begun to pay more attention to the design of user interfaces and such considering the
human component more important than in the past.

The design of the user interface that is used for the SQbS prototype is based on a simple
sketchpad metaphor. That is the user should have the basic functionality provided by a simple
piece of paper, a pencil, and an eraser. This original tool set is to be extended by non-
obtrusive features that a computerized environment supports, such as enhanced editing
capabilities, multiple views of the same data, analyzing tools, and polymorphous
characteristics of the input device. However, this complex functionality should be hidden from
the user, for whom an interaction with a sketch-based device should be as natural and intuitive
as the scribbling on a notebook. :

To achieve this goal we have implemented various visual clues and forms of. interaction that
people already are familiar with in their everyday life. The readiness of the sketch, for instance,
is indicated by lights with different colors (red, yellow, and green) and the tool currently in use
is indicated by familiar icons, such as a hand for pointing and selecting, a special gesture for
grabbing, and a pen that indicates drawing.

Other visual clues include the appearance of the drawn objects themselves. If an object has
been detected as such, then it changes its color. Hence, objects can be distinguished by
looking at the drawing alone. There are three stages that can be distinguished like this, the first
stage (color blue) indicates that an object is currently being modified, extended, or that it has
just been created. Just completed objects—that is an object that has been processed—change
their color to green, the indicator for the last processed object. All other objects are black.

However, for certain operations it was necessary to introduce buttons or menu items, but
again, we tried to be as intuitive as possible, relying to a great extent on a user's common
knowledge. Such, for a normal sketch it is only necessary to tell the application that the sketch
is completed and ready to be processed (a single button to be pressed) in order to initiate a
database query—no other button has to be pressed. The prototype incorporates three different
levels of abstraction that are implemented as views, but only one view is mandatory for every,
the other two views are optional.

3. Data Model

The prototype implementation is programmed in an object-oriented environment (Microsoft,
1999) and the data model is object-oriented as well. The programming languages used are C
and C++ and the implementation platform is a standard PC with a Microsoft Windows 95/98
operating system. The graphical functions rely on the MFC library (Microsoft Foundation
Classes) provided with the Microsoft compiler.

‘:.f Elements : ;

Figure 1 General data structure

. The general data model of the prototype application is shown in Figure 1. The sketch is the
highest order data object and it consists basically of drawn objects and relations between
those objects. Objects on the other hand consist themselves of primitive drawing strokes and
sketch elements that are derived from these strokes. The following sections describe links and
dependencies between the different mayor classes and their functionality.

3.1. Sketch

The sketch class (CSketchoDoc) is the principal data storage class. Each sketch has only one
single sketch object, but the application can have more than one sketch open at the same
time.

CSketchoDoc
g List of Sketch Objects (Pointers to CSObject objects)

g List of Sketch Relations (Pointers to CSRelation objects)

Set of Sketch Properties

Set of Functions

Figure 2 General overview of the CSketchoDoc class

A sketch objects maintains two essential lists: the first list stores pointers to sketch objects
(CSObject) and the second list stores pointers to relations (CSRelation). In MFC terminology a
sketch is a document, derived from the MFC CDocument . class. The sketch object is
responsible for the creation and the deletion of objects as well as relations, its properties
include sketch specific parameters, such as sketch annotations, number of objects, current
status of the sketch, or the current view. The sketch’'s functions cover everything that is
necessary to create and maintain the two lists as well as global functions for processing its
data.

3.2. Objects

Each sketch object is a unique entity with its own functionality and its own data space.
Originally an object is defined as a set of stokes that has been considered belonging to the
same entity (a CSObject object). :

3.2.1. Stroke and Point

A stroke (CStroke) is an unintelligent polygon that is created when the virtual ink starts to pour
out of the pen and is closed or completed when the user lifts the pen. Such, a stroke stores the
geometrical and temporal information of the pen movement (x/y and t). This raw information is
captured in a list of points (PPoint structure), which represents the basic data structure of user
input within this application.

struct PPoint
{

CPoint Point; // Coordinates of input point
CPTime Time; // Time when point was created
int PenSize; // Pressure dependent PenSize
int Flag:; // Point specific flag

}:

Code Fragment 1 Deﬁnifion of the basic PPoint structure.

Before a stroke can be used it is preprocessed and irregularities, such as duplicate points are
being eliminated. The number of points per stroke is further decreased by applying a
smoothing function (See also Section 4.1).

~ 3.2.2. An Object

The general type of a sketch object can be Region, Line, or Point. However each objects
can maintain a set of regions, lines and/or points. This is because an object can consist of
more than just one of these elementary forms, for instance a town can be graphically
represented by multiple boxes representing houses. Beside all elements being of the same
type it is also possible that an object can have mixed forms, e.g. lines and regions. However,
each object can only have one geometric type (region, fine, or point) that is assigned when the
object is complete. This type is also manually changeable by the user. During the initial
drawing phase of the sketch all objects are either regions or lines. Objects of type point can
only be created when two line objects intersect that is, points represent always derived
objects—By now this feature of object inference is only conceptually implemented, hence the
prototype generates no derived objects. However the principal mechanism is already
implemented in the current data model (See Section 6, Future Extensions).

CSObject
g List of Strokes (Pointers to CStroke objects)
Three Lists of Sketch Elements (CSElement)
% List of Regions (CSRegion)
g List of Lines (CSLine)
g List of Points (CSPoint)

g List of Sketch Relations (Pointers to CSRelation objects)

Set of Sketch Properties

Set of Functions

Figure 3 General overview of the CSObject class

The set of properties of an object is relatively big this is, because a sketched object stores all
the object relevant data, such as annotations, geometrical parameters, state of object, and
many things more. Similarly, an object has a huge functional interface. An object is able to
process itself, it can draw itself in different views, or change its type. Summarized, it is a self
standing unit with “knowledge” about itself and its close environment. The link to the outside
world is provided through a list of pointers to relations that bind the object within the sketch
with other neighboring objects. These pointers represent a subset of those that the sketch
(CSketchoDoc) maintains.

3.2.3. Sketch Elements

Sketch elements are the “intelligent” form of strokes, that is they have a type (Region, Line,
or Point) and they have some higher order functionality. The base class for all sketch
elements is CSElement. Derived from this class are CSRegion, CSLine, and CSPoint. The
information stored in an element is purely geometrical and no semantic information can be
stored. Elements are automatically derived from strokes during the object assessment phase,
when strokes are broken down into non-intersecting segments and objects are interpreted. The
functionality of an element can vary, depending on its type. Line elements, for instance, have a
length while region elements have an area function. An other difference between objects and
elements is that an element has no information where it belongs to, this linkage information is
only stored within objects.

CSElement

£= Listof Points

ig] Set of Element Properties

Set of Functions

Figure 4 General overview of the CSElement class, which is the super class for regions,
lines, and points.

Because objects derived from subclasses of CSElement are purely geometrical, they are also
being used for other purposes, such as storing intermediate results or calculating other
parameters, such as the convex hull of an object.

3.3. Relations

There are two types of relations supported by our the prototype, binary relations
(CSBinRelation) and multiple relations (CSMultiRelation), both are derived from the CSRelation
class. Obviously a binary relation links two objects and a multi relation more than two object
with each other. Relations are considered as self standing entities within a sketch, similarly to
sketched objects. The major difference between sketch objects and relations—beside interface
and data space—is that objects are drawn and relations are not. That is, relations are in
general not explicitly specified by the user, but derived based on the configuration of the
sketch.

CSBinRelation
==~ List of Intersection Points
=== List of Intersection Lines

£~ List of Intersection Regions

P Pointers to two objects

Set of Relation Properties

1 Set of Functions

Figure 5 General overview of the CSBinRelation class

By now the system creates only binary relations. However, multiple relations can be defined
manually between three or more objects, though there is not yet any implemented functionality
that goes over the basics of creation and destruction of a multiple relation. Binary relations, on
the other hand, are created by the application at the time when all objects are drawn and the
sketch is ready to be processed. Once an empty relation between two objects is created, then
the relation can derive all the necessary parameters, such as metric, topology, and directions
autonomously. To do so, a relation maintains pointers to all objects it is related to. If two
objects intersect each other, then the relation is also storing their geometrical intersection,
which can be a sets of points, lines, and/or regions. These sets of intersection are by now only
used to calculate relational parameters, but they could easily be used to create derived objects
in the future. '

4. Sketch Processing

During the process of extracting information from simple strokes it is essential to take the
spatial and temporal component into account. This approach provides valuable information
about the genesis of a sketch, in that it may reveal step by step what the user was thinking
while sketching a particular situation (Blaser, 1998).

People typically draw objects one by one, without switching between objects while drawing.
Applying such a priori knowledge, it becomes much easier to make the first analysis of a
sketch. But still, if the examination would only consider temporal aspects of drawings, then this
would be insufficient, because the user might want to add or edit a previously drawn object
and such interrupting the normal sequential creation of objects.

The first part of this section is concerned about parsing the input stream of points and about
extracting and associating strokes with objects. The second part takes a look at how the
prototype processes and classifies raw objects, and the third section, finally, describes how
objects are related to each other. '

4.1. Sketch Parsing

The sketch parsing part consists mainly of a first quality check combined with a simplification
method that reduces the number of points while retaining the original infermation content and
the shape of the stroke. This phase is immediately followed by an first evaluation of the stroke
and an attempt to associate the stroke with a previously drawn object.

4.1.1. Smoothening

Depending on the drawing speed, the used computer, the input device, the operating system,
and in general the whole sketching environment there is an abundance of points that are
passed to an event-based application. Many of these points are redundant or unnecessary,
because the point density is much too dense. Other impeding factors are that sometimes
points in temporal sequence have identical values and that sketched objects are frequently
imprecise and shaky, which is due to the very nature of any freehand drawing. ~

In order to cope with such an irregular and unpredictable input flow it is an essential part of any
such system to be able to filter points. For our prototype we chose the Douglas Simplification
Algorithm (Douglas and Peucker, 1973; McMaster and Stuart, 1992) that uses a holistic
approach to eliminate all unnecessary points from a line.

The algorithm uses one single tolerance value to determine if points should be kept or
dropped. Figure xx below shows how the algorithm is used for a section of a line segment. The
blue fine line is the original line and the red line is the result of the simplification.

Tolerance

Figure 6 Principle of the Douglas Simplification Algorithm

This algorithm is very robust and efficient, and with a carefully chosen tolerance the difference
between the non-smoothened and smoothened stroke is barely visible. The great advantage of

reducing the number of points at this stage is that less points translate directly into less
segments, what greatly reduces processing time.

4.1.2. Sequencing

The second task is associating strokes to objects. For each newly created stroke there are
basically three possible cases, if we exclude the case of the first stroke:

+ a stroke can be associated to the current incomplete object,
+ a stroke can be associated to an other than the current object, or

+ a stroke can be associated to no other previous object that is, it is the first stroke of the
new current object.

The criteria for this classification are based on the time difference between the last previously
drawn stroke and the new stroke as well as on the location of the new stroke in relation to
other objects. In this context we use some user configurable thresholds for each of the applied
measures. Figure xxx shows the principle for the time parameter.

Threshold

1.0[}

Value’
—p

g

0.0 24 12.0[sec]

Time
Figure 7 Basic principle of the influence of time for the sequencing of strokes.

In the example in Figure 7 all strokes that are drawn within a timeframe of 2.4 seconds are
automatically associated to the previous object. After this period of time the “Connection value”
shows a linear decrease. The same function is used for all other measures as well and the
values of each function are added and normalized, if no measure indicated a value above the
threshold (Formula 4.1). This normalized value must be greater than another user definable
threshold, if the stroke is to be considered belonging to the previous object.

Connection Criterion = 1 ZConnection Value, Formula 4.1
n g
The reason for this approach is that people have different sketching strategies that must be
taken into consideration. The prototype does no reasoning about these parameters, the
preferences must be configured manually using sliders. However, a future application could
analyze the number of sequencing errors and accordingly adapt certain parameters. Such user
preferences could be stored and used much like the profiles used for speech recognition.

The application informs the user about the sequencing of strokes by coloring objects
differently, as described in Section 2. Strokes that have been associated with the wrong object
can easily be re-associated by applying the attach or detach button. This action can also be
done at later time when the sketch is already finished. Below is a list of editing tools that the
prototype provides:

+ Attach or detach a stroke or groups of strokes to or from an object

+ Break objects apart into single strokes (ungroup) '

+ Group strokes or objects to an object

* Move or delete strokes or objects.

According to our survey these functions where most important to the surveyed subjects, when
asked about essential functions in a sketch-based query interface for GIS.

4.2. Object Generation

When a set of strokes has been grouped to an object and when it has been closed—that is,
the next object has been created—, then it is time to analyze and further classify this object.
The presented measures represent a basic set of functions that can be extended in a later
phase of the development of a sketch-based application. Knowledge about objects at this
stage is crucial, because it allows the system to make a pre-analysis of the sketch, solely
based on detected objects and without yet taking their relationship into account. For instance,
it is feasible that a software agent starts to browse remote databases in order to detect objects
and related information just after a sketched object was analyzed and before the actual query
is formulated. Such, information and meta information is already available when the user
presses the query button, essentially speeding up processing and the search for information.
On the other hand this pre-processing allows the system also to interact with the user and to
advise him or her about certain pre-fetched facts (Blaser, Sester and Egenhofer, 1998).

The following sections describe some basic object classification measures.

4.2.1. Text Detection

A user of a sketch-based system can annotate object by three different ways, he or she can
type, write (freehand writing), or talk to the system. While the talking aspect is conceptually
prepared it is not yet implemented and so is the handwriting part. However, the present
prototype can distinguish handwriting from ordinary objects and such, making it easy to
process an object that has been detected as text.

Text detection in this phase is necessary because written text is different from ordinary objects
in that the point density of test strokes must be much higher to allow for a good handwriting
detection. Therefore, the initial smoothening described in Section 4.1.1. must be done with a
conservative tolerance. This is the reason why we smoothen objects that have been classified
as non-text objects a second time—using a higher tolerance—right after the text detection.

The criteria for the text detection are based on observations described in our sketch report. For
instance, we noticed that most people keep a certain writing angle, writing from left to right.
Beside this, we consider the curvature, the number of abrupt direction changes, and the

overall direction change of strokes to decide if a group of strokes is to be considered text or a
sketch object.

4.2.2. Gesture Extraction

Gestures are something very natural to human beings. They are articulated using a variety of
“tools”, such as hands, the face, and even the whole body is frequently used to “talk” in this
non verbal language. In sketches gestures are reoccurring symbolic drawings that are
borrowed from various disciplines. Although not standardized, we found that there is a
common set of gestures that is used and understood by a large number of people from the
same cultural environment. An good example is crossing something out. Other gestures are
more domain specific, hence they often represent common symbols of such a domain; a
sketch triangulation point in a surveyor's sketch is an example A ,

10

Gesture detection and interpretation is very useful because it provided an other, alternative set
of communication tools that is relatively swift and lean compared to other approaches in user
computer interaction. A sketched gesture for instance, such as a bridge symbol is drawn
quickly, with two simple strokes but it conveys a lot of information. '

g

Figure 8 Example for dashed line and hatch detection; left the sketch and on the right side
the interpreted result.

The prototype detects two types of gestures: dashed lines, and hatched areas, as shown in
Figure 8. Other, simpler structures that do not have a varying number of strokes, such as a
cross (e.g. with two strokes) are much easier to detect, hence is seems feasible to incorporate
an entire, extensible and user configurable vocabulary of gesture for a sketch based
application.)

4.2.3. Segmentation

The segmentation of objects is a relatively difficult task this is, because of the virtually
unlimited possibilities people can create their sketches. The term segmentation in this context
means that all strokes are broken down into non-intersecting, connected segments, such as
shown in Figure $$$.

o
o— Start of Segemnt
~— End of Segment

Figure 9 Segmentation of an object: Left before the segmentation (four strokes) right after
the segmentation of the object (twelve segments).

Each segment has a list of points, a start and an end point and some “knowledge” about the
immediate neighbors in form of two other lists that store pointers to these neighbor segments
and some other related information. A segment can be closed, self-closed, half-open, or it can
be completely open. This information is crucial for all subsequent processes that rely on how
segments are connected with each other.

1

4.2.4. Object Completion / Object Clean-Up

Sketching is no exact science and people often sketch their objects incompletely and
inaccurately. This leads to gaps and irregularities in objects that are difficult to process if they
are not previously corrected. People, on the other hand, have no problems recognizing even
very incomplete figures, because they can anticipate the correct shape or silhouette solely
based on a few fragmentary strokes as is shown in Figure $$$ below.

Figure 10 This Figure shows a frag}nentary sketched object on the left side and the object
that most people would perceive on the right side.

Although the example in Figure10 is somewhat exaggerated, gaps and incomplete objects are
very common. In most cases strokes do not exactly intersect where they are meant to and .
such they stop before they can intersect another stroke or “overshoot”. The prototype covers
three of the most common cases, to correct these problems (Figure $$3$).

74 [0ls-

Figure 11 Three cases where object completion is necessary.

Object completion is done in multiple steps with different threshold levels, similar to the
process of smoothening strokes. The first time that a stroke is analyzed in this regard is directly
after it has been associated with an object. At this point we check if the stroke must “snap” to
the object. For this purpose there are again different user adjustable, snap-distances for
strokes that end close to a vertex of another stroke and those that end close to an edge. The
second phase of object completion is scheduled after the object has been segmented.

Object clean-up is simply the process of dropping segments' that are very short and partially
connected or fully open. This is often the case when two strokes intersect and one or both
resulting segments. : '

4.2.5. Outline Extraction

The next step is to extract outiines. For this purpose the application tries to find the largest
closed area of the object. If there are more than one area then they are all stored in a sorted
list, depending their size. If there is no closed area then the convex hull is calculated and

12

stored as a quasi area. The prototype supports multiple areas that can contain each other. The
only restriction is that closed regions may not touch, in which case solely one region (the larger
one) is stored.

o~

Figure 12 The two areas resulting from different turning directions.

The principle of outline extraction is to follow segments and to turn always to towards the same
side at intersections, where more than two segments come together. This procedure has to be
done at least twice for each object, because it is very difficult to predict the appropriate tuming
direction a priori. The results are two areas that may differ in their size (Figure 12). The bigger
size is the outline. This procedure is repeated until all segments are processed, that is until
there are no closed segments left that have not yet been processed.

4.2.6. Type Determination

The type of an object is determined by comparing the sum of areas of all region of the object
with the area of the convex hull of the object. If the sum is smaller than a certain percentage,
then the object is considered a line object—even if there are regions in the object. Using this
approach, we can also have mixed type objects that is, objects that contain more than just one
element type. If the system should misinterpret an object, then the user can change the type of
an object by the push of a button. '

4.2.7. Parallel Extraction

If an object has been considered being a line, then the application tries to find parallels within-
the object. For this purpose we check for every segment if there are neighboring segments
that do not belong to the same stroke but that are in reach and parallel to this one. If parallels
are found we check if there are other parallels within the same object that are potential meet
candidates. Figure 3 shows an éxample of a road intersection where such a procedure is
useful. '

Figure 13 Left a line object before the parallel extraction and on the right after the parallels
have been detected.

13

Detected parallels substitute all segments that have been involved in their extraction. These
parallels and the remaining segments are stored in a list of lines within the object (Figure 13).
This list of lines is sorted depending on the length of each line.

4.2.8. Kernel Extraction

We define the kernel of a region as the longer centerline of the tited minimum bounding
rectangle (TMBR) of an object. This is an abstraction for the real centerline of an object that is
more complex to calculate. The TMBR is that bounding rectangle that has the smallest
possible area of the whole set of bounding rectangles for a specific object. Such a bounding
rectangle is obtained—with an adequate accuracy—by rotating an object with small increments
(1.0° grad in our case) and recording size and position of the MBR’s. The advantage of a
TMBR is that it is only slightly more complex than a regular MBR but has, compared with this
one a directional component and an optimal fit for a specific object Furthermore, most objects
in sketches are boxes anyway (Blaser, 1998), and such a TMBR is an ideal approxmatlon for
many calculations. .

Figure 14 An object of type region and its TMBR with the two main axis a and b.

Figure 14 shows a TMBR and the two centerline axis (a and b) of a region object. TMBR's can
also be used for the approximation of lines, but due to their specialties a TMBR is less suitable
for this purpose. However, TMBR's carry in any case—for lines and regions—more information
and a more accurate than their MBR counterpart. A TMBR can be defined in different ways,
depending on external constraints, such as processing speed or compactness In our case we
have opted for speed and stored all four corner points.

4.3. Relation Extraction

The subsequent step after the sketch has been parsed and all objects have been assessed is
to bring these objects into a meaningful relation to each other and to describe these
relationships in a formal way. The following sections describe the foundation and realization of
the approach chosen in our prototype. '

4.3.1. Relational Network Generation

A common approach to establish binary relationships between objects is to connect every
- object with every other object. The actual number of binary relations for n objects applying this
method is: n! /2* (n-2) !. While this method has the advantage to be comprehensive in that
no single relation gets lost, but it has the serious downside that many of these relations are
unnecessary, because there is only a virtual relation but no real connection between two
objects. An example is a suburban district with 1000 houses, the likelihood that one house of

14

the east side has a direct connection to one house of the west side is relatively low. Hence it
seems to be beneficial to establish and calculate only a selection of relevant relations.

During the implementation phase of the prototype we have been more and more aware about
the necessity of developing a theory and a method that can intelligently and efficiently
distinguish between important and irrelevant relations. We are currently investigating
approaches that can be used for sketched objects including points, lines, and regions.
Because there is yet no theory available we have implemented a simple algorithm that is
based on geometry alone. The basic idea of this method is that every object has a certain
range (‘relational range”) that is dependent on its and its neighbor’s objects size. The size in
our case is the area for region objects and a function of the length for line objects (Value for
the “area” of a line:= Length?/4, with 4 being an arbitrary, user definable value).

Range of Object = [Areagy,., + Areagyen Formula 4.2

This approach provides in many cases a good approximation that can later easily be
substituted by an other, more elaborate algorithm.

Each relation is considered and treated as special sketch object with no drawn features but
instead with links to such draw sketch objects. Relations have their own data space and their
own functionality. Therefore, it is straightforward to extend the interface of such a relation
when new findings are being made. The following three sections reflect the current status of
our research concerning binary spatial relations.

4.3.2. Topology

This research area is relatively well documented for simple regions, simple lines, and points
(Egenhofer, 1989; Egenhofer and Franzosa, 1991; Egenhofer and Mark, 1995). The prototype
implementation covers all Region—Region (RR) relatlons and a subset of Region—Line (LR)
relations.

Because sketching is no exact science we have adapted the theory in so far that we have
introduced a tolerance for certain topological RR conditions, such as Meet, Covers, and
CoverdBy. The motivation for such a tolerance is that we primarily want to assess what the
user has intended to draw and only secondarily what he or she has actually sketched. Figure
$$$ shows an example of a situation where a user placed two objects such that they touch
(meet condition). With a pure mathematlcai approach, however this would be a clear overlap
condition.

Figure 15 Binary RR object relation, that is considered to be of type Meet, despite the small
section that the two objects overlap.

15

A tolerance must be introduced with all other spatial relations that have similar characteristics,
such as when a road object (Line) is sketched following the boundary of a settlement (Region).

Because people have different sketching strategies these tolerances, like most other
adjustable parameters, have to be stored in a user profile.

4.3.3. Direction

The directional relation between two objects is described by the Direction-Relation Matrix
(Goyal and Egenhofer, 1997). This is a three by three matrix that describes “how much”
neighboring object is in each of the eight adjacent, bounding boxes and in the minimum
bounding rectangle of the object itself. These values are normalized, such that the sum of all
values is 1.0. Figure $$$ shows this definition graphically . :

dy, d, dj;
== {d, dy, dy
Object Al dy dy, dy

Figure 16 Direction-Relation Matnx for an object A with an object B in graphical and numerical
form.

The values of the Direction-Relation Matrix are deri\)ed from the percéntage of the object in
each of the nine quadrants, this is an area for region objects and a length for line objects.

4.3.4. Metric

For each set of binary topological relations that is possible between two objects there are
formal, metrical descriptors that circumscribe this relation. The formulations used in our
prototype application are primarily based on research done by Shariff and Egenhofer (Shariff,
1996; Egenhofer and Shariff, 1998), who describe eight metrical refinements for
Region—Region relations (Figure$$$).

16

Inner Area Splitting Outer Area Splitting Exterior Splitting

__area (A°NB°) oas = 2red (A°N\B7) BS = area (bouded (A~ N B7))
area (A) " area(A) | ' - area (A)
. Inner Traversal Splitting Outer Traversal Splitting | Alongness Splitting

_ length (OA N B®) length (CAN B™) length (GA N OB)

: = AS =
length (GA) ors length (2A) : length (2A)
Inner Closeness : Outer Closeness
‘ AA
Ic = area (A(A)) ' oc = area (A(A)) + area (A)
area (A) area (A)

Figure 17 Metrical refinements of topological relations between regions

Similar refinements are also possible for Llne—Reglon relations, but they are not yet
implemented in our prototype.

17

5. Levels of Abstraction

Our prototype has three different levels of abstraction for the same data. In Microsoft MFC
terminology different levels of abstraction are called Views. The primary data view is the
Sketch View, this is the place where the sketch is generated and edited and this is also the
only mandatory view. The other two views can be used to examine the intermediate results of
the sketch interpretation. '

5.1. Sketch View

This is the normal environment of the user interface, it is the place where the sketch is initially
created, edited, and from where a spatial query can be made. The user Interface is very
simple, including only few primary drawing tools (draw, select, zoom, delete) and even
somebody with only limited computer experience can readily draw a simple sketch—It worked
fine with a four and six year old child—. If the mouse as input device is substituted with an
electronic pen and used in conjunction with a tablet or directly on a flat screen, then the
usability and simplicity is further enhanced. In our experiments we have used a Wacom 12x12”
drawing tablet and a pen with a double switch button (rocker switch). One button is configured
to invoke extended functions of the pen and the other to get context information or set object
properties, depending on the actual cursor position. -

Figure 18 Sketch View with a typical sketch.

The cursor changes its appearance and takes on different icons, depending on the current
mode, so that the user is always aware about the present status of the pointing device. Other
visual clues, such as different object colors, have already been mentioned in the user interface

18

Section 2. Figure 18 shows a screenshot with a typical sketch. An extensive description of the
functionality of this initial user interface can be found within the users guide to the prototype
application (Blaser, 1999).

5.2. Object View

The Object View shows what the application has detected in point of view objects. The view
shows a simplified and interpreted outline of each object and it conveys—using different
colors—each objects’ type. Should an object have been misinterpreted, for instance a region
has been considered a line because it was not automatically closed, then this can be reversed
by a simple push of a button. It is also possible to move, delete, and edit objects at this stage,
all without changing the initial sketch. That is, modifications on this level are only passed
forwards to the next level of abstraction, but not backwards.

Figure 19 Object View showing the same situation as in the previous section

This view is well suited to examine and control the automated processes of the prototype. In
the example of Figure 19 all objects have been detected correctly, solely the bridge symbol on
the right side of the sketch was improperly classified as line object. Upon detecting such an
inconsistency, the user has quickly converted the bridge into a region, by pressing a single
button. On the other hand all regions have been correctly closed and the forest was detected
as an open (hatched) region. Considering line objects, the processing was done satisfactory as
well that is, the parallel lines have been substituted by a single line, the adjacent road has
been attached, and the two interrupted brook segments have been connected as well.

18

5.3. Formal View

The Formal View (Figure $$3) is the third and last view of our prototype application. This view
represents the highest level of abstraction where every object or relation is solely depict by a
symbol that is connected to other entities according the previous sketch analysis. Currently
there are five different symbols implemented. These symbols cover the present data model of
the prototype, which are: region and line objects, and binary and multiple relations. As
mentioned before, multiple relations can be established, but they do net yet carry any data, but
that necessary for the connection of the selected objects.

Despite the relative simple and abstract look of this view, the user has some powerful tools to
further edit the sketch in this phase. For instance, it is possible to disable or re-enable relations

or objects, and it is as well possible to create new relations between objects even if there is no
previous automatically generated relation.

Figure 20 Formal View showing the same situation as in the previous section

It is also possible to delete object and relations permanently, but like in the previous view, such
an action has no effect on the original sketch or its representation in the Object View. An other
feature of the Formal View is the browsing component: Properties of objects as well as those
of relations can be viewed and partially modified. However, modifications are limited to realistic
parameters, such as the object relevance or topology.

20

6. Future Extensions

‘Like with many other research projects, this project has produced more questions in certain

areas than answers. This is not necessarily negative, first because this is the very nature of
research and second, because some questions, problems, or ideas can only evolve if certain
paths are investigated. The following sections are a composition of thoughts and ideas that
emerged during our research and the subsequent implementation of our prototype. Some
ideas have already been conceptually or partially implemented while other topics are new and
not yet put on paper. ‘

a) Integration of Verbal Input

The integration of a verbal component into our sketch-based prototype has been a long term
goal and with recent advances made in speech recognition this goal seems much more
feasible than ever. The complexity that such an integration would add is—from our point of
view of the application—mostly due to the synchronization between spoken word and the
sketched objects. The system has to conceptually and semantically “understand” what the user
is drawing and check the consistency of this multi-modal input. For instance if the user draws a
box and talks of a road, then the system has to “know” that this verbal annotation is most likely
not meant for the box, but maybe for the previous or following, not yet drawn, object. That is,
the application has to keep track of objects that have already been created and “keep in mind”
that the user might speak of objects that are solely created in his or her mental model of the
sketch but not yet on paper. Such an evaluation and consistency checking process requires a
great deal of implemented intelligence and a solid procedural model. A research group at the
NCGIA in Orono has recently started to- examme possible approaches in this context (Sketch
and Talk).

b) Handwriting recognition

A true multi-modal application has to be able to understand handwritten input as well as
spoken verbal input. However, the integration of this functionality seems to be a much easier
task, because the current prototype is already capable of distinguishing sketched objects from
handwritten text. Such, the actual task is reduced to examining the detected text strokes for
characters and known words. :

However, and similar to spoken inbut the processing does not stop here, because a textual
annotation must be associated to an object so that the information can be used for the
interpretation of the sketch (Blaser, 1998).

c) Gesture Detection

Gestures are similar to symbols on a map reoccurring signs with a specific meaning. Our
prototype can detect two more complex gestures (irregular dashed line and hatched open
area) but there are many other common gestures that a sketch-based application should be

| able to understand. Hence, the task in this concern is to compile databases with domain

specific and domain independent gestures and to develop a mechanism that allows to
personalize and use these gestures within a sketch-based application. Because of the
similarity to other well-researched fields, such as handwritten character recognltlon this task
seems to be practicable as well.

21

d) Personalized preferences

Because sketching is so individual from one user to another, it appears that personalized
settings must be automatically generated for each individual user. A sleek method could
consist of a mechanism that traces a user's actions and that would learn a user’s preferences
“on the job” that is, for instance, when the system makes a misinterpretation and when the
user has to manually corrects thls error, then the system should evaluate this correction and
adapt the preferences accordingly. For instance, if a user constantly has to attach strokes to
the previous object, then the system should extend the timing parameter in the parsing phase.

e) Theory for the inference of secondary objects

Primary objects are objects that are drawn directly onto the drawing device, while virtual or
secondary objects are in general created implicitly. An intersection of two roads is a good
example: although not drawn as such—the location of a simple line-line intersection must not
be especially marked—an intersection may play a much more important role than the two line
objects it was originally derived from. Hence, we have to extend our formalism to include
derived objects as well. For this purpose we need a mechanism that evaluates object relations
and that, if necessary and applicable, creates new objects. For each such new object, we have
to eliminate one relation and create at least two new relations.

) Theory for the generation of a network of relevant object relations in a sketch

In Section 4.3.1 we have mentioned that it seems unnecessary to take all possible relations in
a sketch into account. Rather it appears that it is beneficial to introduce object neighborhoods,
where every object has only “knowledge” about its immediate neighbors. Such an approach
leads to a network of connected objects with a substantially reduced set of relations.

Beside the advantage that such a system can be processed at a fraction of the expense that is
necessary to calculate a model that incorporates all possible relations, there are other
advantages as well. For example, updating and modifying such a reduced system appears to
be very elegant, because, instead of recalculating the entire model it is only necessary to

reevaluate a small portion of the network, that is where an object has been inserted, deleted,
or where an object was altered.

In this context various approaches appear to be practicableﬁ A purely geometrical method
could be based, for instance, on Voronoi (Ven-) Diagrams (Voronoi, 1908; Okabe, Boots and
Sugihara, 1994) to obtain the local neighborhood of each object. Other approaches could

combine semantic and geometric information, leading to more sophisticated, but also more
complex relational networks.

g) Aggregation and Hierarchy

Being able to aggregate certain groups of objects could further simplify a sketch and make a
spatial query more successful. For instance, if a sketch consists of multiple houses that are-all
located around a river next to a forest, then this situation could be simplified by aggregating
the houses into the semantically equal term seftlement, and such reducing the number of
objects to three. This approach leads to an object-oriented hierarchy.

22

h) Methods to evaluate the relevance of drawn objects

An other form of refining the quality of a sketch is to pre-evaluate the importance or relevance
of sketched objects and their relations. Based on our observations in the sketching survey
(Blaser, 1998), it seems that not all sketched objects have the same weight. Hence, if it is
possible to automatically rank objects depending on their importance, then this would be a
great help, later on, when a query must be formulated. The results of such an evaluation
provide also substantial insight into the user's mental model of the sketch, which is in turn
essential to derive the purpose of the sketch. '

i) Translation of the formal model into processable query statement

The translation of the formal model of the sketched representation into a form that can be
processed against a spatial data base is another step that requires some thoughts. The
formulation of the query depends, naturally, to a great extent on the set of spatial descriptors
that are available in the specific query dialect into that the formal model has to be translated.
Hence, it makes no sense that a sophisticated spatial description is translated into a query
language that does not support any spatial terms at all.

j) Developing a theory that allows relaxing a sketch

Relaxing constraints within a sketched representation is necessary when a spatial query
produced only unsuitable results. In such a case the weights of low priority objects and
relations have to be decreased, and certain entities may even be excluded so that the next
- search is more successful. This may sound simple in principle, but the decision which are the
- parameters to be modified is not trivial. ‘ '

23

7. Conclusion

Our prototype application has proven that a sketch-based query user interface is a viable way
to describe spatial situations and potentially also to query spatial data. We could successfully
parse and sequence sketched input and effectively extract objects. The classification of
objects and the formal description of spatial relations between these objects appeared also to
be a solid foundation for the generation of comprehensive scene description that can be
translated into a processable spatial data base query statement. We have also shown that all
major operation in this context can be accomplished in real time and that the level of today's
computer performance is adequate to support a modest sketch-based system.

The prototype also demonstrates that the complexity of a sketch-based system can be hidden
behind an easy to use and intuitive user interfface—to many uninvolved first time users, the

prototype appeared like a simple drawing program—and that many interpretative tasks can be
automated.

However, until such a sketch-based query user interface can be put to good use, there are still
some challenging issues to solve, such as how to translate the formal model of the sketch into
a spatial query statement, or how to derive additional higher order semantics from a sketch
(meaning of objects and sketch). But despite these challenges, we believe that sketching is a
powerful tool to express spatial constraints and-—based on the concepts demonstrated in our

prototype—has its legitimacy as one form of input generation within a rich, multi-modal
environment. : :

24

8. References
Blaser, A. (1996) Spatial-Query-by-Sketch, User Interface Mockup. Orono, NCGIA.

Blaser, A. (1997) User Interaction in a Sketch-Based GIS User Interface. international Conference
COSIT '97 (Poster Session), Laurel Highlands, PA, Springer-Verlag, Berlin.

Blaser, A. (1998) Geo-Spatial Sketches. (Second Geo-Spatial Sketches). Orono, National Center of
Geographic Information and Analysis, University of Maine, Orono, Technical Report, 133
PP. '

Blaser, A. (1999) Sketcho! Users Guide. (Second Sketcho! Users Guide). Orono, University of Maine,
NCGIA, pp. .

Blaser, A., Sester, M. and Egenhofer, M. (1998) Visualization in an early Stage of the Problem Solving
Process in GIS in Computer & Geosciences (to appear)(Special Issue "Geoscientific
Visualization"), pp.

Douglas, D. and Peucker, T. (1973) Algorithmé for the Reduction of the Number of Points Required to
Represent a Digitized Line or its Caricature in Canadian Cartographer 10(2), 112-122
pP. . ‘

Egenhofer, M. (1989) A Formal Definition of Binary Topological Relationships. In Third International
Conference on Foundations of Data Organization and Algorithms (FODO), Paris,
France, Eds. W. L. a. H.-J. Schek, Springer-Verlag, New York, NY, 457-472 pp.

] Egenhofer, M. (1996) Multi-Modal Spatial Querying. Seventh International Symposium on Spatial Data
Handling, Delft, The Netherlands, '

Egenhofer, M. (1996) Spatial-Query-by-Sketch. In VL '96: IEEE Symposium on Visual Languages, Eds.
M. Burnett and W. Citrin, IEEE-Computer Society, Boulder, CO, 60-67 pp.

Egenhofer, M. (1997) Query Processing in Spatial-Query-by-Sketch in Journal of Visual Languages and
Computing 8(4), 403-424 pp.

Egenhofer, M. and Franzosa, R. (1991) Point-Set Topological Spatial Relations in International Journal
of Geographical Information Systems 5(2), 161-174 pp.

Egenhofer, M. and Mark, D. (1 995)'Modeling Conceptual Neighbourhoods of Topological Line-Region
Relations in International Journal of Geographical Information Systems 9(5), 555-565 pp.

Egenhofer, M. and Shariff, A. R. (1998) Metric Details for Natural-Language Spatial Relations in ACM
Transactions on Information Systems 16(4), 295-321 pp.

"Goyal, R. and Egenhofer, M. ((in press)) Cardinal Directions between Extended Spatial Objects in IEEE
Transactions on Knowledge and Data Engineering pp.

Goyal, R. K. and Egenhofer, M. J. (1997) The Direction-Relation Matrix: A Representation for Direction
Relations between Extended Spatial Objects. Annual assembly and the summer retreat
of University Consortium for Geographic Information Science, Bar Harbor Maine,

McMaster, R. and Stuart, S., K. (1992) Generalization in Digital Cartography, Association of American
Geographers, Washington D.C., 134 pp. '

Microsoft (1999) Microsoft Development Studio, Visual C++ 6.0. Seattle, Washington, Microsoft.

Okabe, A., Boots, B. and Sugihara, K. (1994) Nearest Neighbourhood Operations with Generalized
Voronoi Diagrams: A Review in International Journal of Geographical Information
Systems 8(1), 43-71 pp.

Shariff, R. (1996) Natural Language Spatial Relations: Metric Refinements of Topological Properties.
Ph.D. Thesis, University of Maine, Orono, Maine, pp.

Voronoi, G. (1908) Nouvelles applications des paramétres continus a la théorie des formes quadratiques
in Journal fiir angewandte Mathematik 134,198-287 pp.

25

